Pharmacists as powerful change agents: Leave no-one behind through life course vaccination

Hannelie Meyer

Professor: School of Pharmacy Head: South African Vaccination and Immunisation Centre Sefako Makgatho Health Sciences University Email: <u>hannelie.meyer@smu.ac.za</u> Website: <u>https://savic.ac.za/</u>

SEFAKO MAKGATHO HEALTH SCIENCES UNIVERSITY

#PharmacyMonth2024

#GetVaccinated

Educated

Motivated

Vaccinated

Protected

No-brainer questions about vaccines

#PharmacyMonth2024

#GetVaccinated

Benefits of vaccination

World Health Organization (WHO) Immunization Agenda 2030 (IA2030)

every year, a figure that could rise to

5.8 million

by 2030 if the goals of the Immunization Agenda 2030 (IA2030) are met. A world where everyone, everywhere, at every age ... fully benefits from vaccines ... for good health and well-being

https://www.who.int/teams/immunization-vaccines-and-biologicals/strategies/ia2030

#PharmacyMonth2024

#GetVaccinated

Goals of IA2030

Where can the pharmacist play a role?

Reduce mortality and morbidity from vaccine-preventable diseases for everyone throughout the life course

Prioritise prevention (aging population)

Leave no-one behind, by increasing equitable access and use of new and existing vaccines

Ensure access to vaccination services for all

Ensure good health and well-being for everyone by strengthening immunisation within PHC and contributing to UHC and sustainable development

Ensure sustainability and reduce inequity in healthcare

https://www.who.int/teams/immunization-vaccines-and-biologicals/strategies/ia2030

#PharmacyMonth2024

#GetVaccinated

Why are pharmacists important role players in immunisation?

ACCESSIBLE

PHC – first point of access to healthcare; most people have access to community pharmacies

TRUSTED

Highly trusted by communities when seeking healthcare information

KNOWLEDGEABLE

Scientists who are ideally placed to expand health literacy

'TIME' More time to listen and provide advice compared to most HCPs

#PharmacyMonth2024

#GetVaccinated

My Provider Most Trusted as a Source of Truth on Health

Percent who say

I trust each to tell the truth about health issues and how best to protect the health of the public

My Provider Most Trusted as a Source of Truth on Health

Percent who say I trust each to tell the truth about health issues and how best to protect the health of the public

of the public

2024 Edelman Trust

Barometer Percent who say GLOBAL 12 Singapore* Germany Ustralia Canad. China Global 12 unempowered 35 I am health empowered I confidently make decisions 78 78 77 76 70 68 70 72 71 70 I confidently inform myself 62 64 65 62 59 I speak up to my primary care provider 46 I can tell good information from bad I'm in charge of my health My health decisions are most important

202 Edelman Trust

Globally, 2 in 3 Feel Empowered to Manage Their Health

https://www.edelman.com/sites/g/files/aatuss191/files/2024-04/2024%20Edelman%20Trust%20Barometer%20Trust%20and%20Health%20FINAL.pdf

2024 Edelman Trust Barometer

What is life course vaccination?

Persons should receive all recommended vaccine doses along their life course to reap maximum benefits of preventing vaccine-preventable diseases at different ages, across generations, and within their communities

PAHO. Immunization across the life course - Resource center. https://www.paho.org/en/topics/immunization/immunization-across-life-course-resource-center#:~:text=A%20life%20course%20approach%20(LCA,generations%2C%20and%20within%20their%20communities.

#PharmacyMonth2024

#GetVaccinated

Vaccines are NOT ONLY for babies or children ...

Paradigm shift

Vaccines are for EVERYONE – all ages and all stages

#PharmacyMonth2024

#GetVaccinated

Examples of life-course immunisation Families: Tetanus, diphtheria, and pertussis (TdaP)

Optimise heath outcomes across generations

World Health Organization. Protecting all against tetanus: guide to sustaining maternal and neonatal tetanus elimination (MNTE) and broadening tetanus protection for all populations. Geneva: WHO; 2019 [cited 9 March 2023]. Available from: https://apps.who.int/iris/handle/10665/329882.

#PharmacyMonth2024

#GetVaccinated

Examples of life-course immunisation

Individuals: Human papillomavirus (HPV)

Prevent cervical cancer later in life

Table 1. Crude incidence rates of HPV-related cancers

		Male	Female
Cervical cancer		-	35.6
Anal cancer	HPV vaccination	0.66	0.90
Vulva cancer		-	1.29
Vaginal cancer	ALSO for prevention	-	0.62
Penile cancer	of certain cancers	0.72	-
Oropharyngeal ca	ncer in males	1.31	0.38
Oral cavity cancer		3.99	2.55
Laryngeal cancer		2.45	0.54

Table 2. Burden of cervical cancer

	Incidence	Mortality
Annual number of new cases/deaths	10702	5870
Crude rate	35.6	19.5
Age-standarized rate	35.3	19.6
Cumulative risk 0-74 years (%)	3.58	2.10
Ranking of cervical cancer (all years)	2nd	1st
Ranking of cervical cancer (15-44 years)	1st	1st

https://hpvcentre.net/statistics/reports/ZAF_FS.pdf

#PharmacyMonth2024

#GetVaccinated

Elderly persons ≥ 65 years

#PharmacyMonth2024

#GetVaccinated

EPI Schedule from 2024

- Target: Vaccine-preventable diseases (VPDs) with highest morbidity and mortality
- Currently EPI-SA provides protection against 14 VPDs

AGE	VACCINE	AGE	VACCINE		
	Bacille Calmette-Guérin (BCG)	6m	Measles/rubella vaccine (MR) -1		
Birth	Oral polio vaccine (bOPV) -0	9 months	Pneumococcal conjugate vaccine (PCV10) -3		
	Oral polio vaccine (bOPV) -1	12 months	Measles/rubella vaccine (MR) -2		
6 weeks	Rotavirus vaccine (RV) -1	18 months	Hexavalent (DTaP-IPV-HepB-Hib) -4		
	Pneumococcal conjugate (PCV10) -1	6 years	Tetanus diphtheria, acellular pertussis (TdaP) -1		
	Hexavalent (DTaP-IPV-HepB-Hib) -1	Grade 5			
10 weeks	Hexavalent (DTaP-IPV-HepB-Hib) -2	(campaign only)	Tetanus diphtheria, acellular pertussis (TdaP) -1		
14 weeks	Rotavirus (RV) -2	Grade 5 ≥9 years	Human nanillomavirus vaccine (HPV) 1+2		
	Pneumococcal conjugate (PCV10) -2	(campaign only)			
	Hexavalent (DTaP-IPV-HepB-Hib) -3	12 years	Tetanus diphtheria, acellular pertussis (TdaP) -2		

#PharmacyMonth2024

#GetVaccinated

EPI catch-up Schedule from 2024

Magaina			Interval for subsequent doses			
vaccine	Age of child	FIrst dose	Second dose	Third dose	Fourth dose	
Posillo Colmotto Cuárin (PCC)	<1 year	Give one dose				
Bachie Calmette-Guerin (BCG)	≥1 year	Do NOT give				
Ovel Delie Vessine (hODV)	<6 months	Give first dose	4 weeks			
Oral Polio Vaccine (DOPV)	≥6 months	Do NOT give				
Hexavalent (DTaP-IPV-HepB-Hib)	Up to 5 years	Give first dose	4 weeks	4 weeks	12 months (Do not give before child is 18 months old)	
	<6 months	Give first dose	4 weeks	Give at 9 months of age	PCV13 and PCV10 will be considered	
Pneumococcal conjugate (PCV)	6-9 months	Give first dose	4 weeks	8 weeks	– no catch up of PCV10	
	>9-24 months	Give first dose	4 weeks	8 weeks	required if child previously	
	2-6 years	Give one dose			EPI schedule	
	<20 weeks	Give first dose	4 weeks			
Rotavirus	20-24 weeks	Give one dose				
	>24 weeks	Do NOT give				
Maggles (Pubelle (MP)	<11 months	Give first dose	At 12 months	If 1 st dose is MCV, 2 nd dos	e is MR	
	≥11 months	Give first dose	4 weeks	– no catch up with MR re	quired	
Tetanus diphtheria acellular Pertussis (TdaP)	≥6 years	Give first dose	At 12 years	Td and TdaP will be considered interchangeable – no catch up of TdaP required if child previously received T as per EPI schedule		

The following schedule is to be read only in conjunction with the footnotes below

Vaccine Schedules for South Africa for 2024 Compiled by Amayeza Info Services' Vaccine Helpline: for more information call 0860 160 160

Public and Private schedule

Age of child	EPI schedule (6-10-14 wks)	Age of child	Private Starting schedule with Hexaxim® at 6 weeks	Age of child	Private Starting schedule with Infanrix Hexa weeks	ı® at 8	
At birth	OPV(0)	At birth	OPV(0)	At Birth	OPV(0)		
	BCG		BCG		BCG		
			*• Heberbio®, Hep B SII®, Eng	erix B® or	r Euvax [®] (0) given at birth to babies bor	rn to mo	thers who test positive for hepatitis B
6 weeks	OPV(1)	6 weeks	OPV(1)	8 weeks	OPV(1)		
	Rotarix [®] (1)		Rotarix [®] (1) or Rotateq [®] (1)		Rotarix [®] (1) or Rotateq [®] (1)		
	PCV10-Cipla®(1)		Prevenar13 [®] or Synflorix ^{®3}		Prevenar13 [®] or Synflorix ^{®3}		
	Hexaxim [®] (1)		Hexaxim®		Infanrix Hexa [®] (1) ¹		
10	Hexaxim [®] (2)	10 weeks	Rotateq [®] (2) ²	12	Rotateq [®] (2) ²		
weeks			PCV (if using 3+1 schedule) ³	weeks	PCV (if using 3+1 schedule) ³	General	
			Hexaxim®(2)		Infanrix hexa [®] (2)	(0) Birth d	ose which doesn't count as part of primary series
14	Rotarix [®] (2)	14 weeks	Rotarix [®] (2) or Rotateq [®] (3)	16	Rotarix [®] (2) or Rotateq(3)	(2) Second (3) Third d	dose in a series
weeks	PCV10-Cipla®(2)		Prevenar13 [®] or Synflorix ^{®3}	weeks	Prevenar13 [®] or Synflorix ^{®3}	(4) Fourth	dose - a booster
	Hexaxim [®] (3)		Hexaxim [®] (3)		Infanrix hexa® (3)		
6	MR SII®4 (1)	6 months	Measbio ^{®4} or Measles vaccine Cipla [®]				https://www.amayeza-info.co.za/wp-
months			Vaxigrip Tetra® or Influvac Tetra® (o	ne month a	fter Measbio [®]) ⁵		Vaccine-Schedule.pdf

The following schedule is to be read only in conjunction with the footnotes below

Vaccine Schedules for South Africa for 2024

Compiled by Amayeza Info Services' Vaccine Helpline: for more information call 0860 160 160

9 months	PCV10-Cipla®(3)	9 months	Prevenar13 [®] if using 2+1 schedule. (Do not give now if using 3+1 schedule) or Synflorix ^{®3} [at leas months from previous dose] Menactra [®] (1) Measles vaccine Cipla ^{®6} (if measles vaccine was not given at 6 months)	st 6	
12 months	MR SII® (2) ⁴	12-15 months	Priorix® (1) ⁷ or Omzyta® at 12 months Avaxim 80® or Havrix Jnr® (1) at 12 months Onvara® or Varilrix®6.8 (1) Menactra® (2) (At least 3 months after the first dose of Menactra®) Prevenar13® (if using 3+1 schedule)		
18 months	Hexaxim® (4)	18 months	Hexaxim [®] (4) or Infanrix Hexa [®] (4) Avaxim 80 [®] or Havrix Jnr [®] (2) (At least 6 months after the first dose of Hep A)	General:	
6years	Adacel [®] (6 years)	5-6 years	Tetraxim ^{®9} or Boostrix tetra [®] or Adacel Quadra [®] Priorix [®] or Omzyta [®] (2) ⁶ Varilrix [®] (2) ^{6,10}	(0) Birth do (1) First do: (2) Second (3) Third do (4) Fourth d	se which doesn't count as part of primary series e in a series dose in a series se in a series lose - a booster
9 years	Cervarix ^{®11} (second dose 6 mnths later)	9 years	Cervarix [®] or Gardasil [®] or Gardasil 9 ^{®12} (from 9 years) (Second dose 6 months later)		https://www.amayeza-info.co.za/wp- content/uploads/2024/01/2024-
12 years	Adacel [®] vaccine	12 years	Adacel Quadra [®] , Adacel [®] , Boostrix [®] or Boostrix Tetra ^{®13}		Childhood-Vaccine-Schedule.pdf

Public and Private schedule (2)

The following schedule is to be read only in conjunction with the footnotes below

Vaccine Schedules for South Africa for 2024

Compiled by Amayeza Info Services' Vaccine Helpline: for more information call 0860 160 160

Referenced notes (superscripts)

- If the hexavalent vaccine -Infanrix-hexa[®] is given according to the EPI schedule (6, 10 and 14 weeks), then a birth dose of hepatitis B vaccine is required. However, if Hexaxim[®] is used according to the EPI schedule, a birth dose of HBV is NOT required. If no birth dose is given, then Infanrix Hexa[®] should only be given from 8 weeks of age. The first three doses must be at least 4 weeks apart.
- 2. If Rotateq[®] vaccine is used, then 3 doses are required, 6, 10 and 14 weeks. If Rotarix[®] is used, only 2 doses are given 6 and 14 weeks.
- 3. If PCV is given as a 2+1 schedule, it is given at 6 and 14 weeks and at 9 months. When Synflorix® or PCV10-Cipla® is used as per the 3+1 schedule, it is given at 6, 10 and 14 weeks and the 4th dose should be given at least 6 months after the third dose. When Prevenar 13[®] is used as per the 3+1 schedule, it is given at 6,10,14 weeks and the 4th dose is given after 12 months of age (12-15 months).
- 4. Measbio® cannot be given at the same time as other vaccines. MR SII® should not be given with any other vaccines at 6 months of age but can be given with other vaccines from 9 months of age.
- 5. The flu vaccine can be given from 6 months of age but should be separated from Measbio® or MR SII® by 4 weeks. The first year a child gets the vaccine, 2 doses a month apart are indicated.
- 6. Measles vaccine Cipla® can be given at 9 months if the child did not have a measles vaccine at 6 months. Can be given on the same day as other vaccines.
- 7. If Measbio[®] is used at 12 months in the private sector, all other vaccines will then have to be given at least a month later. This will then mean that the second hepatitis A dose cannot be given at 18 months, but at least six months after the first dose.
- 8. Varilrix[®] can be given any time from 9 months of age but is probably most effective if given over the age of 12 months. If not given on the same day as measles vaccines, must then be separated by at least one month. The second dose can be given as early as 4-6 weeks after the first dose but is routinely given at 5-6 years of age.
- 9. Internationally a DTaP-containing vaccine is recommended at 6 years, but Tdap-IPV may also be used.
- 10. Currently Onvara® is registered as a single dose for children younger than 13 years in South Africa.
- 11. Cervarix[®] in the EPI for girls only. 2 doses six months apart. Given to girls >9 years in public schools.
- 12. HPV vaccines are for boys and girls. Course consists of 2 doses, six months apart for children 9-13/14 years of age or 3 doses 0, 2 and 6 months for older adolescents.
- 13. If not given at six years, as Boostrix Tetra® is currently only licensed as a single dose.

https://www.amayeza-info.co.za/wp-content/uploads/2024/01/2024-Childhood-Vaccine-Schedule.pdf

Public and Private schedule (3)

HPV vaccination

Best protection against cancer-causing HPV infections

HPV vaccine Bivalent		Quadrivalent		Nonavalent			
HPV types 16 and 18		6, 11, 16 and 18		6, 11, 16, 18, 31, 33, 45, 52, 58			
Age group first dose Girls & Boys: 9-14 years		Girls & Boys: 9-13 years		Girls & Boys: 9-14 years			
Dose	Interval	2-dose	5-13 months apart	2-dose	6 months apart	2-dose	5-13 months apart
Age group first dose Women & Men: 15-45 years		Women: 14-45 years Men: 14-26 years		Women & Men: 15 years with no upper age limit			
Dose	Interval (months)	3-dose	0, 1–2.5 and 5–12 months	3-dose	0, 1–2 and 4–6 months	3-dose	0, 1–2 and 4-6 months

WHO. Weekly epidemiological record. 16 December 2022. No 50, 2022, 97, 645–672. http://www.who.int/wer

#PharmacyMonth2024

#GetVaccinated

How to put ... LET'S TALK ABOUT VACCINES ...

Vaccinated

... into action!

Protected

Educated

Motivated

Public-Private partnerships: Offer EPI services and vaccines in the pharmacy

#PharmacyMonth2024

#GetVaccinated

Get trained as a vaccinator

|--|

GOVERNMENT GAZETTE, 13 AUGUST 2021

BOARD NOTICES • RAADSKENNISGEWINGS

BOARD NOTICE 100 OF 2021

THE SOUTH AFRICAN PHARMACY COUNCIL

PHARMACIST WHO PROVIDES IMMUNISATION SERVICES

PART 1 SCOPE OF PRACTICE FOR A PHARMACIST OFFERING IMMUNISATION SERVICES

In addition to the acts and services which form part of the scope of practice of the pharmacist as prescribed in terms of Regulations 3 and 4 of the *Regulations relating to the practice of Pharmacy* (GNR 1158, published on 20 November 2000), a pharmacist who has completed the supplementary training on immunisation and injection techniques; and has obtained a section 22A(15) permit, may be allowed to acquire, possess, use and supply vaccines and medicines required for adjunct therapy and perform consultations with patients at a pharmacy or in an approved setting, which includes:

- (a) comprehensive patient history taking;
- (b) administering of vaccines in line with the Expanded Programme on Immunisation in South Africa (EPI-SA) and any other vaccine programme as may be approved by the Director-General (Health);
- (c) monitoring of the outcomes of the immunisation;
- (d) treating of adverse events following immunisation and anaphylactic shock; and reporting of adverse events;
- (e) referral to another health care provider where necessary; and
- (f) record keeping and maintaining confidentiality.

#PharmacyMonth2024

PART 2: COMPETENCY STANDARDS

Summary of competency standards for pharmacist providing immunisation services.

DO	MAIN	Com	petency Standard		
1.	Public health	1.1	Professional advocacy		
		1.2	Pandemic management		
2.	Safe and rational use of	2.1	Patient consultation		
	vaccine and administration	2.2	Communication with patient, caregiver, and		
	device		agent of a patient		
		2.3	Patient management		
		2.4	Vaccine and administration device safety		
3.	Supply of vaccines	3.1	Vaccine administration		
		3.2	Vaccine storage and control		
		3.3	General housekeeping and administrative tasks		
			in the pharmacy		
4.	Organisational and	4.1	Quality assurance		
	management skills	4.2	Record keeping		
		4.3	Policy development		
5.	Professional and personal	5.1	Professional practice		
	practice	5.2	Ethical and legal practice		
		5.3	Continuing professional development		

PART 3: CRITERIA TO ACCREDIT A GENERIC SHORT COURSE FOR PHARMACISTS IN IMMUNISATION AND INJECTION TECHNIQUES, AND DELIVERING IMMUNISATION SERVICES.

SAPC accredited training providers → Short course

Complete training on immunisation and injection techniques Record evidence of competence with SAPC

Apply to the NDoH for a Section 22(A)15 permit

Record Section 22(A)15 permit with SAPC

#GetVaccinated

Get trained on how to manage vaccines

Training available on the Knowledge Hub for all healthcare workers

#PharmacyMonth2024

#GetVaccinated

https://www.who.int/immunization/programmes_systems/policies_strategies/MOV_GIM_27June2018.pdf

Communicate effectively to address people's concerns

Does the vaccine work?

?

Is the vaccine safe?

What is your recommendation?

Educated

Motivated

•

Vaccinated

ted 🛛 🔶

2023	Knowledge	Knowledge of vaccine preventable diseases in South Africa (n=400)							
Post COVID-19		Never heard of it before today	Heard of it but don't know anything about it	Heard of it, know what it is, but not much else	Somewhat knowledgeable	Know a lot about it			
Rotavirus diarrhoea		52%	18%	16%	8%	6%			
Diphtheria		51%	22%	17%	7%	4%			
Haemophilus influ	<i>ienzae</i> type b (Hib)	48%	24%	15%	10%	4%			
Human papilloma	virus (HPV)	44%	19%	15%	14%	8%			
Tetanus		42%	21%	14%	16%	7%			
Yellow fever		42%	22%	16%	13%	8%			
Hepatitis A		40%	23%	16%	14%	8%			
Rubella / German measles		39%	12% 14%		22%	14%			
Hepatitis B		36%	20% 18%		18%	8%			
Pertussis/whoopi	ng cough	33%	19% 23%		16%	9%			
Typhoid		31%	35%	20%	11%	4%			
Herpes zoster (shi	ngles)	23%	31%	24%	16%	8%			
Mumps		22%	16%	19%	25%	18%			
Meningitis / meni	ngococcal disease	12%	21%	26%	26%	15%			
Pneumococcal dis	ease /pneumonia	12%	16%	27%	27%	18%			
Cholera		11%	37%	16%	20%	15%			
Polio		9%	13%	23%	35%	20%			
Measles		7%	9%	16%	36%	33%			
Chickenpox/varicella		5%	6%	16%	36%	38%			
Tuberculosis		4%	8%	15%	34%	38%			
COVID-19		2%	3%	10%	26%	61%			
Flu or influenza		2%	3%	8%	23%	65%			

Unpublished data: Not for reference

Knowledge of available vaccines in South Africa (n=400)

COVID-19		98%		1% 1%
Flu or influenza		91%		<mark>3% 6%</mark>
Measles		87%		3%10%
Polio		85%		2% 13%
Chickenpox/varicella		82%		3% 16%
Tuberculosis	5	57%	20%	23%
Mumps	54	4% 69	6	40%
Rubella / German measles 📃	519	% 3%	46	%
Pertussis/whooping cough 📕	42%	7%	51%	
Hepatitis B	42%	5%	54%	
Tetanus	41%	5%	55%	
Cholera 📕	40%	17%	4	3%
Human papillomavirus (HPV)	40%	6%	54%	
Pneumococcal/pneumonia	38%	22%		40%
Rotavirus	38%	4%	58%	
Hepatitis A 📕	37%	6%	57%	
Meningitis	36%	20%	44	1%
Yellow fever	36%	8%	56%	
Haemophilus influenzae (Hib)	32%	7%	62%	
Diphtheria	30%	5%	66%	
Typhoid	30%	12%	58%	
Herpes zoster (shingles)	27%	18%	55%	

2023 Post COVID-19

Yes, there is a vaccine available

- No, there is not a vaccine available
- Unsure if there is a vaccine available

Unpublished data: Not for reference

Unpublished data: Not for reference

Perceptions of safety of vaccines in South Africa (n=400) (2)								
]	P	ost			
Strongly Disagree Slightly Disagree Neither disagree nor agree Sl	ightly Agree	e Stron	gly Agree	COV	/ID-19			
I follow advice from friends/family/colleagues who think vaccination is NOT important, safe or effective		48%	<mark>6 20</mark> %	20	<mark>% 10% 2</mark> %			
Healthy people/children do not need vaccinations		48%	6 16%	20%	11% 7%			
I do not/My child does not need vaccines because I am/my child is protected by taking vitamins or natural products		47%	18%	19%	<mark>11%5</mark> %			
There is no need for me/My child to get vaccinated because everybody else does		43%	17%	19%	12% 9%			
I would prefer (my child) to gain protection from an illness/disease by catching the illness myself/themself rather than getting the vaccine		42%	16%	19% 2	14% 9%			
I do not like the idea of vaccines (for my child)		36%	21%	20% 1	4% 10%			
62% Vaccines can cause conditions such as autism or infertility	20%	19%		43%	12% 7%			
64% Vaccines contain dangerous ingredients	18%	20%	3	6% 1	L7% 9%			
68% Healthcare professionals give out too many vaccines	11%	21%	4(0% 1	8% 10%			
74% Vaccines can cause long-term side effects	10% 17	7%	36%	249	<mark>%</mark> 14%			
86% Vaccines can cause short-term/immediate side effects (such as fever, pain, etc.)	<mark>6%</mark> 9%	24%	31%	6	31%			
91%	3 <mark>%7%</mark> 1	.9%	27%		45%			

Unpublished data: Not for reference

Influence of COVID-19 on trust in routine immunization, health information sources and pandemic preparedness in 23 countries in 2023

Received: 19 December 2023
Accepted: 21 March 2024
Published online: 29 April 2024
Check for updates

Brief Communication

Jeffrey V. Lazarus **0**¹²³ —, Trenton M. White¹², Katarzyna Wyka¹, Scott C. Ratzan¹, Kenneth Rabin¹, Heidi J. Larson **0**⁴⁵, Federico Martinon-Torres **0**⁶, Ernest Kuchar⁷, Salim S. Abdool Karim **0**^{8,9}, Tamara Giles-Vernick¹⁰, Selina Müller **0**¹¹, Carolina Batista¹²¹³, Nellie Myburgh¹⁴, Beate Kampmann¹⁵ & Ayman El-Mohandes¹

https://doi.org/10.1038/s41591-024-02939-2

Willingness to get vaccinated against other diseases e.g. flu, measles, hepatitis B

South Africa

39.2% Unsure / No opinion Strongly / Somewhat disagree

Decail			01.4	-			0 5	10.2	1
Brazil		81.1		46.0			8.5	10.3	
Canada		49.4	_	16.8		-	33.8		
China		60.3			21.	5	1	8.2	
Ecuador			76.3			9	.2	14.5	
France	30		19			51			
Germany		47		21.5			31.4		
Ghana			77.2				13.7	9.1	
India			82.9				11.	5 <mark>5.6</mark>	
Italy		48.7		20.6	;		30.8		
Kenya			84				6.5	9.5	
Mexico			80.4				10.8	8.7	
Nigeria			85.4				5.7	7 8.8	
Peru			78.9				10.7	10.4	
Poland	33.7		21.6			44.7			
Russia	32.4		12.6		5	5			
Singapore		68	.1			21.4	4	10.5	
South Africa		60.8			11.1		28.1	•	
South Korea		52.6			27.6		19) .7	
Spain		60.8			17.8		21	.5	
Sweden		46.8		25.4	1		27.8		
Turkiye		52.9		12.9	Ð		34.2		
United Kingdom		55.9			24.9		19.2		
United States		52.8		1	18		29.1		
23-country average (N=23,000)		60.8			16.1		23.1		
HIC Average (N=11,000)		48.3		21.4	.4		30.4		
MIC Average (N=12,000)		7	1.1			11.2	1	7.7	
		%							1
	Strongly/somew	/hat agree	Unsure/r	no opinion	Stron	ngly/so	mewhat	t disagre	ee

Lazarus JV et al. Nat Med. 2024 Apr 29. doi: 10.1038/s41591-024-02939-2

"Why are vaccines necessary for everyone?"

"Isn't it better for my child to get fewer vaccines at the same time?"

"What are the risks in providing vaccines to my child?"

"Is my child going to get sick after vaccination? Will too many vaccines overwhelm the immune system?"

"Are there harmful ingredients in vaccines? Are vaccines even safe for my child?" "Is it not better for my child to develop immunity by getting sick than to get a vaccine?"

How is vaccine hesitancy expressed?

decision-making ...

Vaccine hesitancy: A complex phenomenon

Variation based on

- Time
- Place (context)
- Population
- Vaccine

World Health Organization, 2014; Report of SAGE; MacDonald NE. Vaccine hesitancy: Definition, scope and determinants. Vaccine. 2015;33(34):4161-4; Larson HJ, Gakidou E, Murray CJL. The Vaccine-Hesitant Moment. N Engl J Med. 2022;387(1):58-65.

#PharmacyMonth2024

#GetVaccinated

Social media allows for easy mass public communication BUT

- Any opinion can be presented as fact
 - Difficult to tell whether something is an established fact or not
- Fringe opinions and disinformation can be shared widely
- Truth is lost in noise
 - Creation of **doubt** \rightarrow harmful for vaccination
 - Uncertainty → vaccine hesitancy
- Social media and the internet
 - Strongly associated with perceptions that vaccines are unsafe
 - Main influencers of non-vaccination against COVID-19*

Social media pushed vaccine hesitancy to a new level during COVID-19

Wilson SL, Wiysonge C. Social media and vaccine hesitancy. BMJ Glob Health. 2020 Oct;5(10):e004206; *Unpublished data

Since January 2019, Trust in Media on Health Reporting Plummets

Percent who say

I trust the media to report accurate information about healthcare

2024 Edelman Trust Barometer

4 in 10 Regret Health Decisions Based on Misinformation

Percent who say

GLOBAL 12

I have regretted a health decision I made based on misinformation at least once ...

Address Barriers to Better Health: Information Now on Par With Costs, Access

Among the 85% who say there is a gap between how well they are currently taking care of their health vs how well they should be, percent who say

• Change, Apr 2023 to Apr 2024

Significant change

This plays a large role in **preventing me** from taking better care of my health

62% +4 pts

Cost (net)

Healthy options cost too much Cannot afford good healthcare Cannot afford treatments

Information (net)

Contradictory expert advice Changing health recommendations Lack of information

Access (net)

Difficulty accessing healthcare services Lack of institutional support

How should we communicate? One size does not fit all!

Countering misinformation

- Most effective written communication messages amongst COVID-19 hesitant people
 - Emphasising personal benefits (i.e. prevention of serious illness or long-COVID) of the vaccine rather than benefits to the community
 - Information on the safety of the vaccines
- Vaccine promotion messages \rightarrow delivered
 - Trustworthy sources
 - Use persuasive arguments
 - Consider prior **beliefs and attitudes** of people

Exposure to information on vaccine efficacy and safety (science-based messaging) → associated with a higher likelihood of vaccination intention

NIHR Evidence; Promoting vaccination: the right approach for the right group; July 2023; doi: 10.3310/nihrevidence_59296; Whitehead et al. Vaccine. 2023 Jan 27;41(5):1018-1034; Freeman D et al. Lancet Public Health. 2021 Jun;6(6):e416-e427; Avelino-Silva et al. BMC Public Health, 2023; 23, 1162.

How should we communicate? One size does not fit all!

Countering misinformation

Strategies with mixed results

Debunking vaccine misinformation

- Debunking misinformation by presenting present common vaccine myths with corrective facts → mixed results
 - Reduced people's belief in correct information
 - Increased beliefs in false information
 - Incorrect information is repeated \rightarrow easier to remember
 - What you see first is what 'gets stuck in your mind'
- Educational materials
 - Improving knowledge
 - Mixed results or no effect on attitudes to vaccines

Personal communication is key

<u>WHAT</u> you say and <u>HOW</u> you communicate and <u>WHO</u> communicates \rightarrow building trust

Patient-centred open dialogue and empathy

NIHR Evidence; Promoting vaccination: the right approach for the right group; July 2023; doi: 10.3310/nihrevidence_59296; Whitehead et al. Vaccine. 2023 Jan 27;41(5):1018-1034; Freeman D et al. Lancet Public Health. 2021 Jun;6(6):e416-e427; Avelino-Silva et al. BMC Public Health, 2023; 23, 1162.

How should we communicate? One size does not fit all!

Countering misinformation

Potentially unhelpful strategies

- Scare tactics e.g. photos of children with vaccine-preventable diseases
 - Can **backfire** and increase the perceived risk of vaccine side effects
- Messages about vaccine effectiveness and not acknowledging risk → increase vaccine hesitancy
 - Communicate uncertainty by acknowledging that some information is still unknown → reduced vaccine hesitancy

Exposure to information on disease severity (fear-based messaging) \rightarrow lower likelihood of vaccination intention

Communicate with honesty and transparency Knowledge gaps including research; Risks of side effects; Policy-making surrounding vaccines

NIHR Evidence; Promoting vaccination: the right approach for the right group; July 2023; doi: 10.3310/nihrevidence_59296; Whitehead et al. Vaccine. 2023 Jan 27;41(5):1018-1034; Freeman D et al. Lancet Public Health. 2021 Jun;6(6):e416-e427; Avelino-Silva et al. BMC Public Health, 2023; 23, 1162.

Report adverse events following immunisation (AEFI) Be transparent at all times

#PharmacyMonth2024

#GetVaccinated

SUMMARY: 'SOP' for vaccination conversations to address people's concerns

S

STRONG recommendation Use strong language in favour of vaccination (benefits)

OPEN dialogue, listen to concerns, never judge

PRESUMPTIVE style of communication; recommendation as statement and not requiring a response

> Fenton et al. Human Vaccines & Immunotherapeutics. 2018; 14, 2503–2509. doi:10.1080/21645515.2018.1480237. Constable et al. A Cancer Journal for Clinicians. 2022; 72, 561–569. doi:10.3322/caac.21753.

Pharmacists are critical change agents for life course vaccination Pharmacy Month 2024 let's get vaccinated LET'S

01

Practice aligned to the goals of IA2030

Accessible and trusted source of health information

Identify and address missed opportunities

Communicate effectively and contribute to health literacy – huge opportunity

Training and public-private partnerships to extend services

TALK ABO

VACCINE

Educated

Motivated

Vaccinated

THANK YOU

"Vaccinated communities, healthy communities"

Furthermore ...

'It takes a healthy vaccinated village to raise a vaccinated child towards a healthy future'

'It takes a village to raise a child' Our strength lies in UNITY Building confidence in vaccines

Picture source: https://www.picturequotes.com/if-you-want-to-go-fast-go-alone-if-you-want-to-go-far-go-together-quote-17698

#PharmacyMonth2024

#GetVaccinated

Useful resources on life course vaccination Supporting life-course immunisation through pharmacybased vaccination: enabling equity, access and sustainability

A toolkit for pharmacists

FIP STATEMENT OF POLICY The role of pharmacy in life-course vaccination

Executive summar

Vaccination is a highly effective and cost-efficient health intervention that not only keeps vaccinated individuals healthy but also improves the health of the entire population through direct and indirect impacts. Routine vaccination has helped control and eliminate several infectious diseases, preventing millions of deaths annually. Vaccination also reduces the burden on healthcare systems and curbs antimicrobial resistance. However, limited and inequitable access to vaccines in some countries, as well as vaccine misinformation and hesitancy, remain significant challenges. The COVID-19 pandemic exacerbated these access problems and strained health systems, highlighting the importance of proper information, and storage, handling and distribution of vaccines to ensure public confidence and trust in vaccination.

Pharmacists are increasingly involved in vaccine development, promotion and delivery. They perform a variety of roles in vaccination advocacy, awareness and advice, and in many countries they administer and prescribe vaccines. Through their expertise and trust-based relationships, pharmacists combat misconceptions surrounding vaccines and provide evidence-based information to patients. Pharmacists are uniquely positioned to support the vaccination of various population groups and to remove barriers to achieving high vaccination coverage rates, including hard-to-reach or high-risk population groups.

In addition to pharmacists, the pharmacy workforce includes pharmacy technicians, pharmacy assistants, pharmacist interns and pharmacy students, who also have an important role in vaccination. In some countries, pharmacy technicians and pharmacy assistants are certified or registered through approved educational programmes and have additional responsibilities at the practice site. Along with pharmacist interns and pharmacy students, they may be authorised to provide vaccines information and services.

This statement discusses the importance of expanding vaccination schedules and strategies beyond infancy to ensure access to vaccines for all age groups, including adults and older persons. Pharmacists should be integrated into patient immunisation pathways and provide vaccines to special-risk groups, such as those with long-term conditions, pregnant individuals, healthcare professionals, underserved populations and caregivers. Vaccinepreventable diseases are a significant cause of morbidity, including loss of functional ability, and mortality in older people because a gradual deterioration of the immune system brought on by increased age makes them more susceptible to infections.

This statement also discusses the important role of pharmacists in building vaccine confidence and addressing vaccine hesitancy. Pharmacists are accessible, have expert knowledge and interact frequently with patients within the community and hospitals, making them uniquely positioned to engage in meaningful conversations and increase vaccination coverage rates. However, regulatory requirements and policies are needed to ensure the pharmacy workforce is adequately and appropriately trained and that required

1/13

https://www.fip.org/file/5638

Fédération Internationale Pharmaceutique

International Pharmaceutical Federation

https://www.fip.org/file/5588

Are vaccine components safe? **Example: Aluminium**

- Aluminium is used as an adjuvant
 - Enhance the immune response (help the vaccine work better)
 - Allow for fewer quantities of active ingredients
 - Allow for fewer doses of vaccine
- History of safety information since the 1930s
- Amount of aluminium in vaccines
 - Extremely small
 - Does not pose a health risk
- Body is able to remove aluminium, thus safe to use
 - About half 🛛 eliminated in less than 24 hours.
 - More than three-quarters
 ² eliminated within 2 weeks

Source: https://immunizebc.ca/vaccine-safety/vaccine-ingredients/whats-vaccines

Vaccinated

How much aluminium do babies receive from vaccination?

Source: https://immunizebc.ca/vaccine-safety/vaccine-ingredients/whats-vaccines

Are vaccine components safe? Example: Thiomersal

- Thiomersal is also known as thimerosal
- Thiomersal is used as a preservative
 - Preservatives are added during manufacturing to prevent the growth of harmful microbes like bacteria and fungi
 - Contamination with microbes can occur when a syringe needle enters a vial during preparation for administration

Vaccinated

Protected

- Contaminated vaccines could cause severe local reactions, serious illness or death
- History of safety information since the 1930s
- Rapidly excreted from the body; hence safe to use
- No evidence that thiomersal in vaccines poses a health threat or causes autism

Sources: https://www.chop.edu/centers-programs/vaccine-education-center/vaccine-ingredients/thimerosal https://www.goodrx.com/health-topic/vaccines/thimerosal-in-vaccines https://www.cdc.gov/vaccinesafety/concerns/thimerosal/fags.html

Motivated

Educated

What is thiomersal? Is it the same as mercury?

Thiomersal does NOT contain the element mercury \rightarrow it contains a compound of ethylmercury It is also very different from methylmercury

Ethyl mercury	Differences	Methylmercury				
Preservative used in multi-dose vaccine vials	Where found	Found in soil, water, fish, breastmilk, etc. and other sources				
Mercury in vaccines is bound to an ethyl group	Compound	Mercury in fish is bound to a methyl group				
Very low toxicity; not enough to cause poisoning	Toxicity	Can be very toxic in low doses				
Rapidly metabolised → does not accumulate in body	Accumulation in body	Not easily metabolised $ ightarrow$ accumulates in body				
Rapidly excreted \rightarrow within days	Excretion from body	95% absorbed from gut into the bloodstream→ remains for months/longer				

Sources: https://www.chop.edu/centers-programs/vaccine-education-center/vaccine-ingredients/thimerosal https://www.goodrx.com/health-topic/vaccines/thimerosal-in-vaccines https://www.cdc.gov/vaccinesafety/concerns/thimerosal/faqs.html